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1 INTRODUCTION AND OUTLINE

Technological progress of recent years clearly brings to the
forefront the ever-increasing importance of magnetism and
magnetic materials in the everyday life. Detailed understand-
ing of microscopic atomic structure and origins of magnetic
phenomena now appears as key to further advances in diverse
fields of science and technology. Although studies of mag-
netic structures and excitations form a rapidly expanding area
of modern science offering new discoveries and surprises
without an end in sight, a large body of experimental material
and theoretical work accumulated over the past half a century
can be understood in the framework of a simple microscopic
description based on semiclassical treatment of systems of
localized spins of magnetic ions. This article presents a
brief survey of common types of spin structures and exci-
tations found in magnetic crystals that can be described in
the framework of such a semiclassical spin-wave approach.
Experimental examples of neutron scattering studies, as best
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known to the author, are presented for each type, and dis-
cussed in the context of an up-to-date presentation of the
linear spin-wave theory, perhaps, at the undergraduate level.

The article is organized as follows. The introductory
second section outlines the fundamental connection between
magnetism and the electronic spins from which it arises, spin
interactions that are at the origin of cooperative magnetic
phenomena are discussed in the third section, the fourth and
the fifth sections present survey of different spin structures
and spin-wave excitations, respectively, and the last section
gives a brief summary.

2 MAGNETISM AND SPIN

Magnetism of many-electron condensed matter systems is a
cooperative macroscopic quantum phenomenon originating
from the fundamental relationship between the magnetic
moment M and the angular momentum J,

M=yJ (1)

where, y is the so-called gyromagnetic ratio (Einstein
and De Haas, 1915; Barnett, 1935). This expression is a
counterpart of the famous equivalence relation between the

|actinq on the ele uuon-l

magnetic field H%nd the rotation with angular velocity
Q= %H known as Larmor’s theorem, where, ¢ and m,
are the electron’s charge and mass and c is the velocity of
light in vacuum. If a system interacts with an anisotropic
environment, such as an atom in crystal’s electric field, M
and J might be not co-aligned and the gyromagnetic ratio
becomes a tensor quantity, ¥ 4.

The magnetic moment associated with the Ampere’s
molecular electric current produced by an electron moving in
an atomic orbit can already be derived semiclassically from
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the Biot—Savart law,

1z 1z le]
Wie = _fB [re X pe] = _?Ble = _zmecle 2

This establishes the gyromagnetic ratio for the orbital
motion, y; = — 2)'26. This ratio is negative, so the electron’s
orbital magnetic moment is opposite to its orbital angu-
lar momentum. The magnetism of moving electric charges,
however, is grossly insufficient for explaining magnetic prop-
erties of matter, such as magnetism of the lodestone (mag-
netite) known since ancient times, which is why it was one
of the longest-standing problems in the history of science
(Mattis, 1965). Magnetic fields produced by orbital Ampere
currents, like artificial magnetic fields from electromagnets,
are of electrodynamic origin. They are caused by nonrel-
ativistic motion of electric charges and therefore contain
a relativistically small factor, ~« ~ 1/137. The energy of
magnetic interaction between two magnetic dipoles asso-
ciated with Ampere orbital currents of two electrons at
a distance r = 1 A, each carrying 1Bohr magneton, ug =
le|h/ (2mec) = 0.927-10720 erg/Gs,

(1-m2)
3
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3)
is only ~ u2/(kgr?) ~ 0.6K. This is way too small com-
pared with the entropy contribution to the free energy to
explain the existence of magnetism at room temperature and
above. In addition, a simple theorem, established indepen-
dently by N. Bohr and J. H. van Leeuwen, in fact prohibits
magnetism in a system of classical electrons in thermal equi-
librium (Mattis, 1965).

Therefore, room temperature magnetism
could not be described by classical electrodymanics and was
only explained with the devise of quantum mechanics in the
early twentieth century. It is a consequence of the existence
of an additional quantum degree of freedom of an electron, its
spin (Compton, 1921; Uhlenbeck and Goudsmith, 1925). In
quantum mechanics the electron at rest still possesses a quan-
tum of ‘internal’ angular momentum, #s, (% is the Planck’s
constant), described by the spin angular momentum operator
se of magnitude s, = 1/2,

3
s? =S.(s.+1) = x [sj, sg] =is;, efc 4)

There is also a magnetic moment of magnitude u,, =
ug (1 +a/27 —---) &~ 1.001ug associated with the elec-
tron’s spin (Abragam and Bleaney, 1986). It is aligned
opposite to spin angular momentum,

le]

1
Wse = —&sUpSe = V- (5715@) , Vs = —8&s @)

2mec

where g &~ 2.002 is Lande g factor and y is spin gyromag-
netic ratio for the free electron which, like y,, is also neg-
ative. Neglecting a &~ 0.1% relativistic correction, y, = 2y,.
In addition to the orbital angular momentum L, magnetic
moment of a many-electron atom is determined by its total
spin,

S=) s (6)

where the summation can be restricted only to 25 unpaired
electrons. Magnetism of condensed matter systems is usually
described in terms of interactions between these atomic spins
and resulting spin structures and excitations. Within the spin-
S ground-state (GS) multiplet of a Hund’s atom, electronic
spins in the incomplete shell can be expressed as s, = i%s,
with plus sign for the majority and minus for the minority
electrons.

For an atomic system with total angular momentum
J=L+S, atomic gyromagnetic ratio in equation (1) is
a combination of y, and y; and in many cases can be
calculated using simple Lande-type formulae (Abragam and
Bleaney, 1986). Larmor’s equivalence between magnetic
field and rotation can be seen in that additional term in the
free energy resulting from magnetic field H and the term
arising from Larmor rotation with frequency 2; = y-H are
exactly equal,

Qr
Fy=-MH=—y J~7 =-JQ (N

and can be interchanged as a matter of convenience. This fun-
damental equivalence immediately leads to the Lagrangian of
spin rotations,

e (7 n)
L=-x(=-H (8)
27 \y

which is at the origin of the powerful macroscopic descrip-
tion of long-wavelength, low-energy excitations in magnetic
systems with finite magnetic susceptibility y and in the pres-
ence of a magnetic field, in the framework of spin hydrody-
namics (Andreev, 1978).

3 SPIN INTERACTIONS AND SPIN
HAMILTONIAN

Strong interaction between electronic spins leading to mag-
netism in condensed matter results from a combination of
the electrostatic Coulomb repulsion between electrons and
a quantum-mechanical coupling between electron spin and
coordinate wave functions established by the Pauli principle
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which prohibits electrons with the same orbital wave func-
tion from also having parallel spins. Hence, a many-electron
wave function minimizing the Coulomb energy corresponds
to a particular mutual spin alignment of interacting electrons.
As was first established by Heisenberg and Dirac (Dirac,
1926; Heisenberg, 1926, 1928) within the first-order approx-
imation of the perturbation theory the electrostatic Coulomb
interaction in the many-electron system can be expressed in
the form of a spin Hamiltonian,

1
H=Y) e (se-se/ + Z) ©)

which became known as the Heisenberg exchange interac-
tion. Expression in brackets, up to a sign, is just a permutation
operator for two electrons, tagged e and ¢/, expressed through
their spins. The strength of such direct exchange interaction
between two electrons occupying orbital states with wave
functions v, and v, is given by the overlap integral,

Joor = —f‘h* (re) 1//2* (re’)

2
Xy (r) ¥y (r) dre e (10)

ee

which measures the frequency with which two electrons
exchange their orbital states (Bethe and Jackiw, 1997).
For the localized orthogonal orbitals the integral is always
positive (Bethe and Jackiw, 1997; Yosida, 1998) and the
direct exchange coupling is negative, J,» < 0, favoring
parallel, ferromagnetic alignment of electronic spins. This
type of interaction is at the origin of the Hund’s rule requiring
that electrons in an unfilled atomic shell maximize their
total spin, and is also involved in the ferromagnetism of 3d
metals (Fe, Ni, Co) and other materials. In very few cases,
though, straightforward direct exchange is the leading cause
of ferromagnetism. In fact, contribution of electron—nuclei
Coulomb interaction to the direct electron exchange coupling
between two atoms can actually make this coupling positive
(e.g., when electron’s wave functions have large overlap
close to the nuclei), favoring antiparallel, antiferromagnetic
spin alignment (Van Vleck, 1945).

In addition to direct exchange, there are a number of indi-
rect exchange mechanisms contributing to coupling between
atomic spins in condensed matter systems. The leading
cause of the antiferromagnetism in magnetic insulators is
the superexchange interaction resulting from the hybridiza-
tion of wave functions of magnetic 3d ions with those of
the intervening nonmagnetic anions (Kramers, 1934; Ander-
son, 1959). In the second-order perturbation theory, virtual
electron hopping between the anion and the cation orbitals
lowers the energy of the localized electrons. Depending on

the electronic and orbital configuration and the resulting hop-
ping matrix elements, direct exchange on the anion site may
either lead to antiferromagnetic, or ferromagnetic superex-
change (Kanamori, 1959). While in insulators with localized
electrons superexchange interaction is short-range, typically
acting only between the nearest cations bonded by an anion,
in semiconductors where anion states form band superex-
changes interaction can be long range, extending to distant
neighbors (White, 1983). In addition to superexchange, elec-
tron hopping through anion site between 3d cations with two
degenerate states, such as in Mn>*/Mn** mixed valence sys-
tems, can facilitate ferromagnetic coupling, which is known
as double exchange (Zener, 1951, 1959). Finally, in metals,
direct exchange between the localized 3d electrons and itiner-
ant conduction electrons leads to a long-range indirect RKKY
interaction whose sign depends on the distance between 3d
sites and on the density of delocalized itinerant electrons
(Kasuya, 1956; Yosida, 1957).

In view of the fact that spin of each unpaired electron of
a Hund’s atom is (within the ground-state multiplet) propor-
tional to the total spin S, in most cases spin Hamiltonian
of a system of magnetic atoms in a crystal can, to a good
approximation, be written as,

H=Y 188, +Y.D(s)

AT j
~ ypHpS! = Hp + Ha + Hy an
B

The first term here is the Heisenberg exchange including all
direct and indirect exchange interactions, the second term
describes the simplest, second-order uniaxial spin anisotropy
resulting from electron interaction with the crystal electric
field, ~A(L?)?, and mediated by the relativistic spin-orbit
coupling, ~A(LS), and the third term is Zeeman energy in
magnetic field H. The sum is over all atoms tagged by an
index j.

While isotropic Heisenberg exchange does select the
mutual spin alignment in the GS spin structure, it has a full
O(3) spherical symmetry with respect to spin rotations and
therefore does not establish any particular spin orientation
with respect to positions of atoms (on the lattice) in the
coordinate space. Continuum of GS spin configurations that
are related by simultaneous rotation of all spins is allowed.
Symmetry of the order parameter in the exchange structure
can be understood by moving every spin to a single point
without changing its direction. As a result, there might be
just one spin group with coinciding spin directions as in the
ferromagnet, two groups corresponding to two sublattices
with opposite spins, this occurs in antiferromagnets and
ferrimagnets, a star of n groups of similar spins with C,

—p—


Igor
A

Igor
Replace greek lambda with capital A


—p—

4 X-ray and neutron diffraction techniques

rotational symmetry corresponding to n sublattices in a
commensurate spiral magnet, a circle (or ellipse) filled with
continuum of spin directions, such as in the incommensurate
spin spiral, and so on, see Figures 4 and 5. A complete
classification of exchange spin structures was given in
Andreev and Marchenko (1980)

Anisotropic interactions sensitive to spin direction with
respect to atomic positions arise from several sources. First
and perhaps most important is the electron spin interaction
with crystal electric field mediated by spin-orbit coupling
which was mentioned above. Although spin-orbit interaction
is a relativistic, electrodynamic effect, it is an intra-atomic
interaction and is only small on an atomic energy scale.
With A ~100-1000K and more, it is still very significant
on the energy scale of condensed matter systems. Crystal-
field effects are most pronounced in rare earths and in
systems where the atom’s orbital moment is unquenched and
contributes significantly to the atomic magnetization. In rare
earths strong spin-orbit coupling leads to the fine structure
of atomic multiplets where total angular momentum J is a
good quantum number and magnetism exists in the ground-
state J multiplet. In most cases, magnetic moment of an
atom can still be described by an effective spin and using
equation (1), perhaps with anisotropic gyromagnetic tensor
Y op- Anisotropic spin interaction with crystal electric field
on the same site can be described by a single-ion spin
Hamiltonian, which is usually expressed in terms of Stevens
operators O;" (S) (Abragam and Bleaney, 1986; Jensen and
Mackintosh, 1991),

21
Hy=Y "% Bjo35 S

1<§ m=0

(12)

of which only Og (S) = 3(5%)% — S(S+ 1) was included in
equation (11). Bj; are the crystal-field parameters, which, in
principle, can be obtained from an ab initio calculation of
charge distribution in the crystal. These parameters determine
spin orientations with respect to the crystal axes and magnetic
field. In the absence of magnetic field and for the uniaxial
anisotropy of equation (11), spins can minimize their energy
by aligning parallel to z axis when the anisotropy constant
is negative, D < 0, (easy-axis anisotropy) and by being
perpendicular to the z axis when D is positive (easy-plane
anisotropy).

Electron hopping (i.e., the orbital hybridization) between
the cation and surrounding anions can lead to a transferred
spin anisotropy, which is determined by the electric field at
the anion site. In addition, an account for spin-orbit inter-
action may add anisotropic part to the exchange interac-
tion, resulting in two-spin anisotropy, Hy =} 8 D*? S Sf,,

. . ‘]'] .
o, B = x,y, z. Another small source of anisotropic two-spin

coupling is the magnetic dipole interaction, equation (3). The
structure of the diagonal part of anisotropic exchange is simi-
lar to equation (3) and is often called the pseudodipole inter-
action. The off-diagonal part is the antisymmetric exchange
of Dzyaloshinskii (1958)—Moriya (1960) and is usually writ-
ten in the form,
Hpwm = Djj/'l_sj X Sj/J (13)
This interaction is at the origin of weak ferromagnetism
of antiferromagnets, Figure 2(b), and incommensurate spiral
spin structures such as shown in Figure 4. An expression

for vector D can be derived in the perturbation theory and [angular

depends on the matrix elements of the orbital momentum of
the interacting atoms. Its direction in the crystal can often
be determined from the symmetry of atomic orbitals with
respect to the line segment connecting spins j and j'. If
there is inversion symmetry with respect to the center of this
bond, D vanishes. For § = 1/2 ions such as Cu?t, single-
ion spin Hamiltonian resulting from the crystal field is just
a constant and only two-ion spin anisotropy is possible.

In metals and systems with itinerant electrons, the
anisotropy of indirect exchange mediated by these electrons
can arise not only from their spin-orbital coupling to the crys-
tal field, but also from the spin and wave vector dependent
electron scattering due to Fermi surface anomalies, which is
sensitive to the spin polarization of electron bands.

4 SPIN STRUCTURES

While spin Hamiltonian of equation (11) is clearly over-
simplified, for example, it assumes localized spins and
only includes uniaxial single-ion spin anisotropy, it prop-
erly describes a great variety of important cases, some of
which are discussed in the subsequent text. It also appears
that with some notable exceptions, such as often found in
one-dimensional (1D) and two-dimensional (2D) and/or frus-
trated spin systems where the GS is disordered (Mermin and
Wagner, 1966a,b; Haldane, 1983; Chandra and Doucot,
1988), spin structures and excitations of this Hamiltonian can
be correctly predicted by adopting a semiclassical descrip-

tion Based on 1/S expansion. This approach, which is jus-
tified for large spins, is known as the spin-wave theory
(Anderson, 1952; Nagamiya, 1967; Nagamiya, Nagata and
Kitano, 1962).

The starting point for spin-wave calculation is finding the
GS spin configuration that has the lowest energy, Egs, for
classical spins, that is, treating spin operators in equation (11)
as classical vector variables. This neglects all fluctuations and
is essentially a mean-field approximation. For a system of N
identical spins S on a Bravais crystal lattice and without
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anisotropy and magnetic field (D = H = 0), the general
solution for the classical GS of equation (11) is a coplanar
spin spiral (Yoshimori, 1959; Villain, 1959; Kaplan, 1959,
1961),

S; = Sqe' M7 + S5 e A (14)

GS spin configuration is thus specified by the order
parameter Sq, which is simply a Fourier transform of
spin structure. This includes ferromagnetic (Q = 0 and all
spins are parallel) and antiferromagnetic (there are two spin
positions in the lattice, with Qr; =0 and Qr; =7, ie,
there are two sublattices with antiparallel spins) collinear
spin structures, see Figure 1. In a collinear structure Sq
in (14) is a real vector of length S/2. In a noncollinear spiral
spin structure, Sq is a complex vector satisfying conditions
Sg =0 and 2 (SQ-SB) = S? that ensure that all spins have
equal length S. Consequently, its real and imaginary parts
are two mutually perpendicular vectors of length S/./2. They
define the plane to which all spins are confined. Spins follow

the real lattice. Finally, sublattice description is not possible
for incommensurate spirals.

While in some cases introducing spin sublattices is
unavoidable, in many situations spin structure is a weakly
distorted exchange spiral (14) and can be best described in
terms of the nuclear lattice on which the spin Hamiltonian,
for example (11), is defined. In this description all spins in
the ordered structure are treated equally, without subdividing
them into sublattices. The lattice unit cell is not increased to
incorporate translational symmetry breaking by spin order.
The corresponding folding of the nuclear Brillouin zone is
also avoided. Instead, additional (magnetic) Bragg peaks cor-
responding to spin superlattices are indexed in the paramag-
netic (nuclear) Brillouin zone. For a Bravais lattice there is a
single branch of spin-wave excitations, whose properties are
determined by spin structure.

A general procedure for finding the GS structure of classi-
cal spin Hamiltonian (11) on a simple Bravais lattice was
developed in Nagamiya (1967), Nagamiya, Nagata, and
Kitano (1962), Yoshimori (1959), Villain (1959), and Kaplan
(1959, 1961) and recently discussed in Zaliznyak and Zhito-

E circularly polarized rotation in this plane, which propagates in the mirsky (1995a,b), Zaliznyak (2003), and Zhitomirsky and
W _direction of wave vector Q“with the rotation angle given  Zaliznyak (1996). One has to minimize a function of N

by Qr;. All spins in a plane perpendicular to Q are co-
aligned. Unlike circularly polarized electromagnetic wave,
which is transverse, in the absence of anisotropic interactions
spin plane in the exchange spin spiral may have arbitrary
orientation with respect to the propagation vector Q (and the
crystal lattice).

If spin ordering wave vector Q is commensurate with
ome reciprocal lattice vector 7, that is, there exists a
whole number n such that nQ = 7, then only n different
values of spin rotation angle (mod 27) are possible on the
lattice and the spin structure is the commensurate spiral
with finite repeat period. In this case there are only n
different spin orientations in the crystal and one can divide
the spin system into n sublattices with co-aligned spins and
define a superlattice with a larger unit cell which contains
all differently aligned spins. A simple example is spin
structure in a 2D antiferromagnet on triangular lattice. It
is a commensurate spin spiral with propagation vector Q =
(1/3,1/3) consisting of three sublattices directed at 120° to
each other, see Figure 5(c). While sublattice description is
straightforward, it entails significant complications for spin-
wave calculations and for understanding the structure and
behavior of spin order parameter and excitations. Existence
of n spin species requires n equations of motion; an enlarged
unit cell corresponds to a proportionally smaller Brillouin
zone into which dispersion of all excitations existing in
the system have to be folded. It also implies a number of
extinction rules for nuclear Bragg peak intensities prohibiting
unphysical peaks, which would be at fractional positions in

classical vector variables S;, subject to N constraints of
equal length, 87 = §2. Employing Lagrange multipliers and
switching to Fourier representation, which takes advantage
of lattice translational symmetry, the following system of
equations for spin configuration, minimizing spin Hamilto-
nian (11) under the equal-spin constraint is obtained,

NJgSq +€DSi = > hqSq_q = %Haq,o,
q/

D SqSq—g = %840 (15)
q/

Here e; is the unit vector along z axis, §4,q is a 3D Kronekker
symbol, and Sq, Aq and Jq are the lattice Fourier transforms
of spin §;, Lagrange multiplier A; and exchange coupling
J;j lattice fields, for example,

. 1 '
Jq _ Z ]jj’eil QT _ J_q, Jjj’ — N Z qul qr;y (]6)
T q

Result (14) follows immediately from equations(15). In the
absence of anisotropy and magnetic field, the GS energy
per spin is Egs/N = JQS2, so the ordering wave vector
Q corresponds to the minimum of the Fourier transform of
exchange interaction, Jo = min{Jq}. When magnetic field H
is turned on in the absence of spin anisotropy (D = 0), spins
simply tilt toward field, forming a cone. Sq and the plane
of spin spiral component align perpendicular to the field,
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@Ehe net magnetization, ySo = xH, is parallel to it. The same
simple structure is realized when there is uniaxial anisotropy

but the magnetic field is parallel to its axis, although for
easy-axis spin anisotropy (D < 0) it occurs only for fields
above spin-flop transition field, H > Hy ~ S/|D|J. The
balance between exchange and Zeeman energy determines
spin-canting (cone) angle «, sin « = H/H,, which is valid
up to the saturation field, Hy = 2S5(Jy 4 Jg + D). Above Hj,
sin « = 1 and spins are aligned parallel to the magnetic field.

In the general case, when both anisotropy and magnetic
field are present, the situation is significantly more com-
plicated. In addition to straightforward spin canting toward
magnetic field as in the simple cases mentioned above, a
noncollinear classical spin spiral also becomes distorted.
This distortion, known as ‘bunching’, is described by the
appearance of Fourier harmonics at integer multiples, nQ, of
the spin structure ordering wave vector Q, that is, at S»q,
$3@Q, and so on, in addition to Sg. When such distortion is
weak, for example, for small D and H, it can be calculated
using perturbative harmonic expansion, Aq =), A18q.1Q>

Sq = Zn SnQ(sq,nQ’ where A.n7$0 ~ 0(\/?, #)')\.Inl_] and
85| ~ O (A1) (Zaliznyak, 2003). Alternatively, it can
be obtained by considering perturbative corrections to spi-
ral winding angle in the real-space spin structure, 86; =
>, ancos (nQr;) 4 B, sin (nQr;), where the coefficients
a, and B, are of the order ~O ((%)%, (#)") (Zaliznyak
and Zhitomirsky, 1995a,b).

Squares of the absolute value of Fourier components of
spin density, [Sql?, |S20l?, and so on, are proportional to
the intensity of magnetic Bragg reflections associated with
spin order at the corresponding wave vectors, Q, 2Q, and
so on, which are measured in experiment, for example, by

| magnetic neutron diffraction (Izyumov and Ozerov, 1970;
see also hmmm120 S A .
Zaliznyak and Lee, 2005). For spin structures on a simple

Bravais lattice discussed above, where there is only one spin
in the crystal unit cell, Sq is simply given by the magnitude
of that spin S. Higher harmonics, which result from distortion
of exchange spin structure, for small distortions can be
calculated following the procedure described in the preceding
text, see for example Zaliznyak and Zhitomirsky (1995a,b)
and Zheludev et al. (1998, 1999). For non-Bravais crystal
lattices with several spins in the unit cell, Sq is the Fourier
ransform of the spin density of the entire unit cell. When
Zhere is more than one atom in the unit cell of the crystal,
the above procedure of finding spin GS has to be modified
by introducing several spin species. While this situation
is actually more common in real materials, it leads to
some computational complications, resulting in a system of
linear equations for the order parameters of different spin
species (Izyumov and Ozerov, 1970). Nevertheless, the result
in principle is not much different from that for Bravais

lattice. In fact, spin structures can often be easily understood
by simply considering bond energies contributing to the
Hamiltonian (11).

Some examples of spin structures found in different mate-
rials are shown in Figure 1 through Figure 4. The simplest,
ferromagnetic structure, most commonly occurs in metals,
such as 3d metals of the iron group, Figure 1(a). While elec-
tron states in metals form bands and applicability of the
localized spin description is questionable, experiments do
indicate existence of localized magnetic moments in metals
of the iron group and their alloys, persisting well above the
Curie temperature (Schurer, Sawatzky and van der Woude,
1971; Brown et al., 1982; Lynn, 1975, 1984). This can be
visualized by adopting a simple approximate picture called
the s—d model, where electrons of the incomplete d shell are
localized, while valence s electrons are involved in metal-
lic cohesion and are collectivized and described by Bloch
wave functions (Zener, 1959, 1951). They provide long-range
indirect exchange between the localized d electrons. First-
principle local spin density functional calculations (Liecht-
enstein, Katsnelson, Antropov and Gubanov, 1986) indicate
that effective Heisenberg localized spin Hamiltonian can
indeed be used for describing 3d metals, and give effective
exchange parameters for iron and nickel which agree well
with experimental values. However, experimentally deter-
mined magnetic moments in ferromagnetic 3d metals, (. ~
2.2, Ueo ~ 1.7, uni ~ 0.6, are noticeably smaller than cor-
responding expected free-atom values arising from spin of
unpaired 3d electrons, Spe =2 , Sco =3/2 , Sni= 1, which
shows that simplistic s—d model is at best a very coarse
approximation.

Figure 1. (a) Ferromagnetic spin alignment on the body-centered
cubic (bce) lattice found in simple metals (Fe, Ni, Co, . . .). (b)
Antiferromagnetic spin structure on the NaCl-type face-centered
cubic (fcc) lattice found in metal monoxides such as FeO, NiO,
CoO, MnO. Small darker spheres with arrows show metal ions
and their spins, larger spheres are oxygen anions. Structure consists
of ferromagnetic sheets perpendicular to (111) diagonal of the
cubic unit cell (shown semitransparent in the figure), staggered
antiferromagnetically.
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Transition-metal monoxides with simple fcc crystal lattice
adopt antiferromagnetic spin structure shown in Figure 1(b)
(Shull, Strauser and Wollan, 1951). It is driven by strong anti-
ferromagnetic superexchange through 180° M—O-M (M =
Fe, Ni, Co, Mn) bond. Propagation vector of such structure
is Q = (1/2, 1/2, 1/2), in reciprocal lattice units of the cubic
lattice shown in the figure. Spin alignment, however, is dif-
ferent in different oxides, although except for CoO spins tend
to be confined to [111] planes. Antiferromagnetic order at Ty
is usually accompanied by a slight trigonal distortion arising
from magnetostriction associated with anisotropic spin inter-
actions, which makes the symmetry of the crystal consistent
with that of the spin structure, (Kugel, Hennion and Cara-
batos, 1978; Tomiyasu, Inami and Ikeda, 2004; Barbier et al.,
2004; Goodwin, Tucker, Dove and Keen, 2006). NiO has
the highest Neel temperature in the series, Tg\ho) ~ 524K,
TS ~ 298K, TG ~ 198K, TA™ ~ 118 K.

Apart from simple ferro- and antiferromagnetism shown in
Figure 1, there are collinear spin structures where both par-
allel and antiparallel spin alignments coexist, giving rise to
an uncompensated net ferromagnetic, or more precisely fer-
rimagnetic moment. This can result from existence of atoms
with different spins within the unit cell, such as Fe3* and
Fe?", which do not compensate each other when aligned
antiferromagnetically, or from the combination of ferro- and
antiferromagnetic spin alignment in the spin structure. In fact,
both possibilities are realized in magnetite, Fe3O4, which is
a prototypical ferrimagnet known as lodestone since ancient

times, Figure 2(a). At room temperature the unit cell of mag-
netite contains three Fe3;O4 formula units and 24 spins in
total, which are unequally distributed between 8 tetrahedrally
coordinated A sites (populated by Fe’*, S = 2) and 16 octa-
hedrally coordinated B sites (equally populated by 8 Fe’™,
S=2 and 8 Fe’*, S =5/2). Antiferromagnetic superex-
change Jap between A and B sites passing through ~125°
A—O-B bond leads to the antiparallel alignment of A and
B spins within the unit cell. Unequal population of A and
B sites results in the ferrimagnetic structure. Already large
unit cell is not further increased by spin structure, and mag-
netic Bragg reflections appear on top of nuclear Bragg peaks
(Shull, Wollan and Koehler, 1951). Despite small value of the
superexchange coupling, Jap ~ 2.35meV =~ 27K (Alperin,
Steinsvoll, Nathans and Shirane, 1951), magnetite orders at
very high temperature, Tc ~ 858 K. This can be expected
for large Fe?*/Fe’™ spins and is consistent with spin-wave
calculations (Mills, Kenan and Milford, 1966).

In the rhombohedral structure of hematite, Fe,O3,( and
escolaite, Cr,03) there are four Fe’t (S =2) ions in the
unit cell and two types of bonds between them. In the
antiferromagnetic structure below Ty ~ 950 K spins coupled
by the superexchange passing through oxygen anions align
antiferromagnetically, while those coupled directly are co-
aligned, Figure 2(b). Once again spin order does not break
lattice translational symmetry and magnetic and nuclear
Bragg peaks overlap (Nathans, Pickart, Alperin and Brown,
1964). Superexchange bond, which couples spins from

Figure 2. (a) Ferrimagnetic spin structure of magnetite, Fe30,. The unit cell contains 32 O>~ anions (larger light-shaded spheres) and 24
Fe cations (smaller dark spheres). 8 Fe>* ions (S = 2) with co-aligned magnetic moments ~4 1 occupy tetrahedrally coordinated sites
(down arrows), while 16 octahedrally coordinated sites are occupied by an equal mixture of 8 Fe’t and 8 Fe?t (S=5/2, u~ S5 up)
ions aligned in the opposite direction (up arrows), resulting in net ferromagnetic moment ~4 ppg per unit cell, or ~1/6 ug per iron.
(b) Weak ferromagnetism in hematite, Fe;O3. Nearly antiferromagnetic spins are shown slightly tilted in the basal plane, resulting in small
ferromagnetic moment. Both hexagonal and the rhombohedral unit cell with four Fe3* ions and oxygens bridging them are shown.
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(a) (b)

Figure 3. Triangular spin ordering in quasi-one-dimensional ABX3 hexagonal perovskites; magnetic ordering wave vector is Q = B
(1/3,1/3,1). Dark spheres with arrows show 3d metal ions and their spin. Anions (X) bridging 3d ions“n the chains at the corners

one unit cell (dashed lines) and providing the exchange coupling are also shown (larger light spheres). (a) Easy-plane anisotropy does

not distort 120° spin structure, simply forcing the plane of spin spiral to lie in the a—b basal plane. (b) Easy-axis anisotropy || ¢ axis not

= — —____Jonly forces spin plane to be perpendicular to the basal plane, but also distorts perfect 120° triangular ordering (e.g., in CsNiCl; the angle

=_Jthe spin direction mi——L\‘ . L -

between¥the neighbor chains is ~119°).

different sublattices, passes through two oxygen triangles An example of the incommensurate spiral spin structure

that are rotated by 60° with respect to each other and resulting from Dzyaloshinskii—Moriya interaction is found

thus lacks inversion symmetry. This allows DM anisotropic in quasi-2D S = 1/2 antiferromagnet Ba,CuGe,0O7 shown in

contribution to superexchange, with D vector parallel to Figure 4 (Zheludev et al., 1996, 1998, 1999). Absence of the

the threefold rotation axis (z axis). As a result, spins from inversion symmetry of the antiferromagnetic bond between

different sublattices can lower their energy by slightly canting nearest-neighbor spins on the centered square lattice in the

toward each other and producing a weak ferromagnetic basal plane allows uniform antisymmetric DM exchang
component in the basal plane, perpendicular to z axis. with vector D to (001) z axis. The spin interaction e i, Jar
The same weak ferromagnetism is also found in many energy is minimized when all spins are perpendicular to D, in @

other materials, for example, MnCO3 and CoCOs3 (Borovik-

Romanov, 1959).

Perhaps, the simplest noncollinear exchange spin structure
is a 120° triangular spin ordering occurring in an antiferro-
magnet on the two-dimensional triangular lattice. It is also
an example of the commensurate spin spiral with propa-
gation vector Q = (1/3, 1/3). Such spin ordering is found
in many magnetically quasi-one-dimensional perovskites
of ABXj3 family (A =Cs,Rb,K,...; B=Ni,Mn,V,..
X =Cl,Br, I, . . .) with hexagonal crystal structure. In these
compounds antiferromagnetic spin chains consisting of 3d
metal sites and running along the hexagonal Cg axis are
arranged on the triangular lattice in the basal plane and
form a 120° triangular spin structure in this plane, Figure 3.
Easy-plane anisotropy found, for example, in CsMnBr; and
CsVBr3 does not distort 120° exchange structure, simply  Figure 4. Spiral spin structure in quasi-2D antiferromagnet
forcing all spins into the basal plane (Eibshutz, Sherwood, ~ Ba2CuGexO7. Cu** ions (dark spheres) with S = 1/2 spins (arrows)
Hsu and Cox, 1972; Inami er al, 1995). In the case of form ideal square lattice in the a—b plane. Larger, light-shaded

. . . [ . spheres show oxygens in one unit cell. Noncentrosymmetric tetrag-
easy-axis anisotropy (e.g., in CsNiCls, RbNiCl;, CsMnl3), ) crystal structure (space group P42;m) gives rise to Dzyaloshin-

spins lie in a plane containing the z axis. Triangular spin skii—Moriya interaction which favors spiral spin arrangement with
ordering of ideal spiral structure is distorted and spin open- spins confined in [1,—1,0]xz plane (x axis is directed along@
ing angle is less than 120° (Yelon and Cox, 1972, 1973). the diagonal of the square) and magnetic propagation vector
In CsMnls, where it is only 100°, magnetic Bragg peak (14 ¢, ¢,0) with ¢ ~ 0.0273. This means that interacting nearest-

. . . . . neighbor spins along the diagonal of the square unit cell rotate
corresponding to third order harmonics of spin spiral struc- by @ = 360°-c ~ 9.8° in xz plane with respect to their antiparallel

ture, 3Q = (1, 1, 1), is readily observed (Harrison, Collins,  4lignment in the simple collinear antiferromagnetic structure with
Abu-Dayyeh and Stager, 1991). Q=(1,0,0).
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which case exchange energy per bond is 2J cos¢ + D sin =
4J% + D2 cos (¢ — ), where J is the antiferromagnetic
@isotropic Heisenberg superexchange, o« = — arctan (D/J ) and

¢ 1is the angle between the spins. The energy is a minimum
for ¢ =7 + « and the GS spin structure is an incommen-
surate spin spiral with propagation vector Q = (1 + ¢, ¢, 0),
¢ = «/(2m), shown in Figure 4. In this case not only spin
alignment, but also spiral propagation vector are both deter-
mined by weak anisotropic interactions, and therefore both
are equally strongly sensitive to magnetic field (Zheludev
et al., 1997).

S SPIN-WAVE EXCITATIONS

Spin waves are usually understood in the framework of semi-
classical description and can be visualized as small oscilla-
tions of classical spin vectors around their equilibrium posi-
tions in the GS spin structure, as shown in Figure 5. Their
wavelike spatial composition results from the translational
symmetry of the system. Frequencies of spin-wave oscilla-
tions can be calculated from spin Hamiltonian, for example,
equation (11), by writing torque equations of motion for clas-
sical spins (Mattis, 1965). Such an approach relies entirely
on classical mechanics and can be most generally pursued
employing Poisson brackets formalism (Dzyaloshinskii and
Volovick, 1979). Spin waves are normal modes of the lin-
earized equations of motion. They involve small spin devi-
ations that are perpendicular to the equilibrium spin direc-
tion. Hence, spin waves are transversely polarized, with two
mutually orthogonal linear polarizations of spin oscillations
possible. A circular spin precession around its equilibrium
position can have two possible directions, clockwise and
counterclockwise; one is shown in Figure 5(a) for a spin
wave in ferromagnetic structure.

In an antiferromagnetic spin structure, precession of two
sublattices can have the same, Figure 5(b), or the opposite
sense, Figure 5(c). In the sublattice description, where the
magnetic superlattice contains two spin species, these cor-
respond to two distinct, in-phase and antiphase, spin-wave
modes. In the extended, paramagnetic Brillouin zone (BZ)
description, where there is only one spin-wave branch for
spins on a Bravais lattice, these two modes correspond to spin
waves having different wave vectors, q and q + Q, where Q
is the antiferromagnetic ordering wave vector. For a three-
sublattice antiferromagnetic spin structure on a triangular
lattice there are two possible choices of sublattice(s) rotat-
ing in the ‘wrong’ sense. Hence, there are three spin-wave
modes, Figure 5(d). In general, the total number of spin-
wave modes in the sublattice description equals the number
of sublattices. For a Bravais nuclear lattice, multiple modes
arise from folding of the dispersion surface of a single mode

y
y
)

I

a)

—

Figure 5. Spin waves in different spin structures. Each spin under-
goes precession about its equilibrium direction sweeping out the
surface of a cone over a period 27/w (g), where w (g) is fre-
quency of spin wave and ¢ is the wave vector. (a) Ferromagnet,
(b) in phase, and (c) antiphase mode in two-sublattice antiferro-
magnet, (d) in phase and two antiphase (left to right) modes in
three-sublattice antiferromagnet on triangular lattice. A half-period
of spin-wave oscillation spanning six spins is shown in (a) and (b, c),
corresponding to spin wave with wave vector equal to 1/12 of recip-
rocal lattice unit in the direction of propagation. Antiphase mode in
(c) corresponds to wave vector 7/12 in the extended paramagnetic
Brillouin zone description.

defined in the large nuclear Brillouin zone into a small BZ

of magnetic superlattice. Hence, their number is given by the

volume ratio of these BZ.

In quantum-mechanical description of spins, elementary
quanta of spin excitation in spin systems, which by virtue
of equation (1) are also elementary magnetic excitations,
are known as magnons. In quantum mechanics, states of an
isolated spin system on a lattice are specified by the total spin
of the system, Sy, its z component, S5, and wave vector q,
which determines the eigenvalue of the lattice translation
operator, Ty,

T [q, Sows Sior) = €7 [@. Sior, Siiy) (17

A GS for an isotropic saturated ferromagnet is
0, NS, Siy), —NS < Sg; < NS. For an antiferromagnet it is
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Figure 6. Cuts of the spin-wave dispersion surface in a ferromagnet, J, = J, = J. = J <0, (a), (b) and an antiferromagnet, J, = Jp =
Jo = J > 0, (c), (d) on a three-dimensional (3D) Bravais cubic lattice by an (h,k,ly) reciprocal lattice plane with 1) = 0 (a and c¢) and lp = 0.5
(b and d). Wave vector is measured in reciprocal lattice units (rlu), q, = h, q»b = 1. (a) Spin structure of a ferromagnet has propagation
vector Q = (0, 0, 0) and magnetic Bragg peak positions coincide with nuclear structure Bragg peaks at the corners of the Brillouin zone.
A cosine-like dispersion is quadratic in q around these points. (b) Dispersion for Q = (h, k, 0.5) does not pass through Q = 0 magnetic
ordering vector and has a gap. (c) Dispersion in Q = (h, k, 0) zone does not pass through Q = (1/2, 1/2, 1/2) magnetic ordering vector of
an antiferromagnet but still softens for the uniform mode at Q = 0 and has no gap. (d) Dispersion in Q = (h, k, 1/2) zone cuts through the
Goldstone mode with sine-like dispersion linear in the vicinity of magnetic ordering vector Q = (1/2,1/2,1/2).
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mode with sine-like dispersion along a arising from magnetic ordering vector Q = (0.5, 0, 0). (b) cut by a (h,k,0.5) plane containing neither
Q = 0nor Q = (0.5, 0, 0) and therefore no soft modes. (c) Spin-wave dispersion in a 2D antiferromagnet on a square lattice. There are two
soft modes, at Q = 0 and at the magnetic ordering vector Q = (1/2, 1/2). (c) Spin waves in a triangular lattice antiferromagnet. In addition
to soft mode at Q = 0, there are two Goldstone modes at two equivalent spin ordering wave vectors, Q = (1/3,1/3) and Q = (2/3, 2/3).
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|0, 0, 0) (this implies sublattice description; ordered GS is
doubly degenerate). In many cases this set of quantum num-
bers is sufficient for describing low-energy states of the
system, which can differ from the GS by having a nonzero q
and by the value of the total spin, that is, A S5, =0, £1.
Therefore, quantum magnons describing these states are
specified by wave vector, ¢, and spin, S =1, $* =0, %1,
quantum numbers. Clearly, there are three magnon polar-
izations in quantum theory, as opposed to only two for
transverse spin waves in classical description. However,
in systems where semiclassical description is valid, for
example, for $>> |, and spin order is well developed, only
two magnons corresponding to semiclassical spin waves are
relevant.

Except for few specific important cases, full quantum-

|mechanical treatment of spin Hamjltonian presents insur-

| —=Jsee also hmmm118, 121

mountable difficulties (Mattis, 1965). The most successful
approximate approach to treating quantum spins is the spin-
wave theory, which starts from a semiclassical approxi-
mation and is based on a perturbative expansion in 1/S§.
Semiclassical magnons obtained in the leading, first-order
perturbation of spin-wave theory are just classical spin
waves.

In spin-wave theory spins are quantized by expanding
deviations from their equilibrium directions in the classi-
cal spin structure in a series of Bose creation—annihilation
operators, using for example, Holstein—Primakoff transfor-
mations (Holstein and Primakoff, 1940). Energies of spin
excitations and quantum corrections to spin structure can
then be calculated using perturbation theory for a system of
interacting bosons. A rather complete nonlinear spin-wave
theory accounting for second and higher order perturbation
corrections has been developed for the isotropic Heisenberg
Hamiltonian; some examples are found in Dyson (1956),
Chubukov (1984), Rastelli, Reatto, and Tassi (1985), Ohyama
and Shiba (1993, 1994), and Veillette, James and Essler
(2005), see also hmmm121.

Spin-wave calculations proceed by transforming every
spin operator to its own coordinate system with z axis point-
ing along the spin direction in the classical GS spin structure.
For a coplanar exchange spiral (14), such coordinate transfor-
mation is achieved by a rotation through an angle Qr ;. Then,
in order to obtain the first 1/S correction to classical approx-
imation, in the standard perturbation scheme spin operators
are expressed through boson operators, a®, a, by employ-
ing the truncated Holstein-Primakoff transformation, S; =
S —ata, S]Jf ~ a~/28, S~ at+/2S. The first-order correc-
tions in such a linear, or harmonic spin-wave theory appear in

@‘16 form of quadratic boson Hamiltonians describing a sys-

‘em of quantum oscillators, which correspond to quantized
classical spin waves. Applying this procedure to Hamilto-
nian (11) for spin spiral without harmonic distortions, the

following boson equivalent is obtained, (Zhitomirsky and
Zaliznyak, 1996),

1
H=)" {(Aq + Cq) agaq + 5 B4 (aqa,q + a(‘fafq)}
q

(18)
where

Aq = —25Jg + Scos’a (Jq + D)

J Jq—
+8 (1 + sin” ) w
J. Jo—
Bq=—Sc0s2a<Jq+D— w>,

Cq = Ssina (Jg+Q — Jg-Q)

Aq and Bg are even, while Cq is an odd function of q.
Equation (18) is diagonalized by the standard Bogolyubov
transformation (which leaves odd-q terms unchanged), result-
ing in the Hamiltonian of uncoupled harmonic oscil-

lators, H=}", {8 () (aﬁ{aq + %) - %Aq}. The constant
term Zq % (8 (@) — Aq) gives 1/S quantum correction to the
classical GS energy. The energy of semiclassical magnons is

e(q) = /Aé — Bé + Cy, or,

Jq+QtJq—Q
(o

x (M sinfa + (D + Jg) cos? o — JQ)

e(q =28

(19)
According to Goldstone’s theorem, breaking of the contin-
uous symmetry of the Hamiltonian in the GS must entail a
zero energy mode(s) in the excitation spectrum. Such modes
appear in the spin-wave dispersion of equation (19) at q =0
and at q = Q, the latter only has zero energy in the absence
of anisotropy and magnetic field.

Dispersion of spin-wave excitations in different spin
structures on simple Bravais lattices calculated using
equation (19) for H = D = 0 and for nearest-neighbor spin
interaction are shown in Figures 6 and 7. Fourier trans-
formed exchange is obtained by summing over the neigh-
bor bonds, Jq =) q2Jacos(q-d), which for a simple
cubic lattice is just J, cos 2w g, + Jp cos2mqp + J. cos2mq..
For a ferromagnet, where Q =0, this expression sim-
ply has to be shifted upwards by Jo=J,+ Jp, + J. to
obtain the spin-wave spectrum shown in Figure 6(a,b).
There is a Goldstone mode with quadratic dispersion at
q=0.

Inelastic neutron scattering provides a direct way of
studying spin waves in most magnetic materials. Magnetic
neutron scattering cross-section is directly proportional to
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Figure 8. Dispersion of spin waves in Fe with 12 at% of Si at
several temperatures, measured by J. W. Lynn using unpolarized
inelastic neutron scattering (Lynn, 1975, 1984). With increasing
temperature, spin-wave energy somewhat softens, but, outside a
small hydrodynamic region, spin-waves neither disappear nor their
dispersion renormalizes to zero as T — T, indicating existence of
localized spins.

the dynamic spin susceptibility and exhibits sharp, delta
function-like peaks at spin-wave energies (Izyumov and
Ozerov, 1970; Zaliznyak and Lee, 2005). Quadratic spin-
wave dispersion measured by J. W. Lynn in ferromagnetic
iron is shown in Figure 8. Spin waves persisting at elevated
temperatures, up to and above the Curie temperature, indicate
existence of localized spins. Quadratic in ¢ dispersion is,
in fact, a very general consequence of the existence of net
ferromagnetic moment in the spin system, and therefore it is
also observed in ferrimagnets (Alperin et al., 1951),

In antiferromagnets and helimagnets (spin spirals) spin-
wave dispersion of Goldstone modes is linear. For an anti-
ferromagnet on a Bravais cubic lattice, cuts of the dispersion
surface by planes perpendicular to [001] direction intercept
only one Goldstone mode at a time, Figure 6(c,d). The situ-
ation is different in ferro-antiferromagnet, which is made of
ferromagnetic sheets in b—c plane coupled antiferromagneti-
cally along a, Figure 7(a,b). The antiferromagnetic, sine-like

dispersion is pronounced along a axis, while ferromagnetic
dispersion in b—c plane is only modified to produce linear
spectrum of a Goldstone mode in the vicinity of the ordering
wave vector, Q = (1/2, 0, 0).

A sine-like dispersion of spin waves in the prototypical
antiferromagnet NiO measured by Hutchings and Samuelsen
(1972) is shown in Figure 9. Data in the figure is indexed in
the reduced Brillouin zone of magnetic superlattice, which
contains a number of modes whose dispersions coincide.
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Figure 9. Dispersion of spin waves in antiferromagnetic NiO at
T =78K, (a) along (110) and (b) along (111) reciprocal lattice
directions, measured by Hutchings and Samuelsen (1972). Wave
vector is indexed in small Brillouin zone of magnetic superlattice
with 4 x times enlarged unit cell, such that magnetic ordering
wave vector is Q = (1, 1, 1). Different curves marked A, B, C,
and D show spin-wave calculation for different magnetic domains
corresponding to four possible symmetrically equivalent directions
of Q in the cubic lattice.
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Spin-wave dispersion in a 2D antiferromagnet on square
lattice is shown in Figure 7(c). Such system attracted
considerable attention after antiferromagnetism was discov-
ered in the undoped parent materials of high-temperature
superconducting cuprates, La,CuO4 (Vaknin et al., 1987)
and Y,BaCu3O¢.y, (Tranquada ef al., 1988) where weakly
coupled layers of Cu?* ions form square lattice in the basal
a—>b plane of the tetragonal crystal structure. Exchange cou-
pling through 180° Cu—O-Cu bond is extremely strong,
reaching ~0.23 meV in chain cuprates (Zaliznyak et al.,
2004). Hence, spin excitations are the most energetic eigen-
modes and are crucial to understanding properties of cuprate
materials. Recent advent of high-power pulsed spallation
neutron sources utilizing time-of-flight spectroscopy enabled
direct experimental observation of such excitations. Spectac-
ular data on spin excitations in La,CuOy4 reported in Coldea
et al. (2001) was successfully described by spin waves, using
effective localized spin Hamiltonian with superexchange and
additional cyclic exchange induced by electron itinerancy.
Similar measurements of high-energy excitations in super-
conducting Y,BaCu3Og¢y, reported in Stock er al. (2005)
can also be reasonably well interpreted within the spin-wave
framework. These finding are quite surprising in view of
the quantum nature of Cu®* spins (S = 1/2) and the low-
dimensional (2D) character of these systems, undermining
the mean-field approach.

Spin-wave dispersion in a 2D antiferromagnet on trian-
gular lattice is shown in Figure 7(d). In addition to q =0
and q = Q = (1/3, 1/3), there is also a Goldstone mode
at T —Q=(2/3,2/3) =2Q, t = (1, 1) is a reciprocal lat-
tice vector. This coincidence (up to 7) between Q and 2Q
makes purely 2D triangular lattice a singular case. For one,
harmonic expansion reduces to a single relation and can-
not be used to describe bunching of triangular spin struc-
ture in magnetic field. Second, spin-wave calculations up
to a second order in 1/S reveal dramatic modification of
spin-wave spectrum (Starykh, Chubukov and Abanov, 2006).
These complications are absent in quasi-1D hexagonal ABX3
antiferromagnets with nearly triangular 120° spin structures,
(Eibshutz, Sherwood, Hsu and Cox, 1972; Inami et al., 1995;
Yelon and Cox, 1972, 1973) where leading interaction is the
in-chain exchange perpendicular to triangular lattice and the
ordering wave vector is essentially 3D, Q = (1/3,1/3,1) #
2Q = (2/3,2/3,0). Numerous neutron scattering studies of
spin excitations in these materials indicate that for spin S > 1
they are reasonably well described by linear spin-wave the-
ory. Some experimental examples presented in Inami et al.
(1995) are reproduced in Figure 10. Resemblance of the data
with dispersion of equation (19) shown in Figure 7(d) is
clearly identifiable.

Perhaps, the most spectacular success of applying spin-
wave description to excitations in a spin system is presented
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Figure 10. Spin-wave dispersion in the a—b basal plane in several
hexagonal quasi-1D antiferromagnets with 120° triangular spin
structure measured by Inami et al. (1995).

in Figure 11. It reproduces spin-wave spectrum in
Dzyaloshinskii—Moriya spiral magnet Ba,CuGe,0O7, whose
structure is shown in Figure 4 and was discussed above,
measured by Zheludev ez al. (1998, 1999). Antisymmetric
DM exchange in this material is accompanied by a two-
ion anisotropy, and the resulting spin GS is an incom-
mensurate bunched spiral, with clearly observable magnetic
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Figure 11. Dispersion of spin waves in Dzyaloshinskii—Moriya
spiral spin structure found in Ba;CuGe,0O7 in zero magnetic field,
measured at 7 = 0.35 K by Zheludev ef al. (1998, 1999). The filled
circles on the abscissa axis show positions of the observed magnetic
Bragg peaks at Q and 3Q. The solid curves are parameter-free
theoretical curves resulting from spin-wave theory calculation.

Bragg peaks corresponding to third harmonics, 3Q, of the
ordering wave vector Q. Distortion of spin spiral results
in appearance of discontinuities in the spin-wave disper-
sion at wave vectors nQ, which are clearly observed in
experiment.

6 SUMMARY

Although magnetism is rooted in the quantum-mechanical
nature of electron’s spin, spin structures and excitations in
a great variety of magnetic materials can be successfully
understood and often accurately described on the basis of
semiclassical treatment of a localized spin Hamiltonian.

= leutron scattering | Dispersion of spin excitations predicted by spin-wave theory

agrees surprisingly Wemexperiment even for ordered
spin systemswith S = 1/2, where 1/S expansion is clearly
not a good approximation. The fundamental reason for this
is perhaps simply the fact that while the mapping of spin
operators to bosons employed in different flavors of spin-
wave theory might not be entirely correct, the fundamental

nature of spin excitations as coupled oscillators on a lattice
is captured correctly. The resulting equations of motion and
corresponding boson Hamiltonian are therefore also correct.
However, they may involve effective interaction parameters
which can differ significantly from those in the original
spin Hamiltonian and which are prescribed by the spin-
wave approximation. Therefore, while reasons for the success
of semiclassical spin-wave description might be superficial,
similar to the Weiss theory of ferromagnetism, it provides
a very useful parameterization for describing spin structures
and excitations in magnetic materials, for example, in the
form of equation (18).
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ABSTRACT: Electronic spin interactions and the resulting spin structures which give rise to various kinds of magnetism
existing in many-electron condensed matter systems are discussed. In most cases, spin structure and excitations in a spin
system can be understood in the framework of semiclassical spin-wave theory. Basic examples observed in magnetic neutron
diffraction and inelastic magnetic neutron scattering experiments are presented and discussed with reference to such description.
Relationship between the structure of the crystal lattice and spin arrangement and energy dispersion of spin excitations in the
crystal are discussed and illustrated by some recent experimental results.
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